In expanding on my previous post about marine microbes, I thought I would dive a little deeper (no pun intended) into this subject. As I said in my last post, many aquarists don’t know the basics of marine microbe existence, mainly because it’s not often discussed in detail. I often advise aquarists to view their systems as one living being. Every part of the aquarium from filtration, to live rock, on up to livestock is part of that being, and must remain healthy for the entire system to function. The basics of that in the aquarium is the same as in an animal’s body, or natural ecosystem, and it begins at the microbial level. In learning more about how microbes affect our marine aquariums, let’s take a look at one group of microbes. Marine viruses: As I pointed out before, most marine viruses attack bacteria. We often associate viruses with getting sick, having a negative impact on an organism or ecosystem. In the case of marine viruses, they play a vital role in the breakdown of organic material. A liter of seawater that contains 10 billion microbes usually contains 100 billion viruses, so it’s clear that viruses make up a huge portion of marine microbial life.
For a long time, researchers have believed marine viruses to be extremely host specific, meaning that they target a specific microbial bacteria lineage. In 2003 however, studies confirmed that various viruses attacked not only different species of cyanobacteria within the same genera, but also different genera of cyanobacteria as well. This shows that viruses are not limited to specific host genotypes, species or even genus. It also points out those marine viruses, which are present in our aquariums, may have broad reaching effects. How viruses effect the assimilation of nutrients: The death of a host cell due to viral infection, and the subsequent release of viral progeny are one way that viruses affect marine ecosystems. The destruction of microbes also releases carbon and other nutrients into the environment, which were previously tied up as cellular materials. Other microbes than assimilate these excess nutrients, leading to a paradoxical consequence of viral infection: the death of one host microbe may benefit another microbe.
Scientists have documented what is called “viral priming” using microbes that exist near the ocean’s surface, around coral reefs. Viral destruction of infected bacterium released organic iron complexes which were immediately taken up by other microbes, as well as diatoms (unicellular eukaryotic algae).… More:
The post Marine viruses: aquarist’s friend or foe? appeared first on reefs.com.